World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0218216507005555Cited by:9 (Source: Crossref)

Motivated by the study of ribbon knots we explore symmetric unions, a beautiful construction introduced by Kinoshita and Terasaka 50 years ago. It is easy to see that every symmetric union represents a ribbon knot, but the converse is still an open problem. Besides existence it is natural to consider the question of uniqueness. In order to attack this question we extend the usual Reidemeister moves to a family of moves respecting the symmetry, and consider the symmetric equivalence thus generated. This notion being in place, we discuss several situations in which a knot can have essentially distinct symmetric union representations. We exhibit an infinite family of ribbon two-bridge knots each of which allows two different symmetric union representations.

Dedicated to Louis H. Kauffman on the occasion of his 60th birthday

AMSC: 57M25