World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FORMULAS FOR THE CASSON INVARIANT OF CERTAIN INTEGRAL HOMOLOGY 3-SPHERES

    https://doi.org/10.1142/S0218216509007610Cited by:2 (Source: Crossref)

    In this paper, we introduce a representation of knots and links in S3 by integral matrices and then give an explicit formula for the Casson invariant for integral homology 3-spheres obtained from S3 by Dehn surgery along the knots and links represented by the integral matrices in which either all entries are even or the entries of each row are the same odd number. As applications, we study the preimage of the Casson invariant for a given integer and also give formulas for the Casson invariants of some special classes of integral homology 3-spheres.

    AMSC: 57M25, 57M27