World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A VOLUME FORM ON THE KHOVANOV INVARIANT

    https://doi.org/10.1142/S0218216511009844Cited by:0 (Source: Crossref)

    The Reidemeister torsion construction can be applied to the chain complex used to compute the Khovanov homology of a knot or a link. This defines a volume form on Khovanov homology. The volume form transforms correctly under Reidemeister moves to give an invariant volume on the Khovanov homology. In this paper, its construction and invariance under these moves is demonstrated. Also, some examples of the invariant are presented for particular choices for the bases of homology groups to obtain a numerical invariant of knots and links. In these examples, the algebraic torsion seen in the Khovanov chain complex when homology is computed over ℤ is recovered.

    AMSC: 57M25, 57M27