World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HOMOMORPHIC EXPANSIONS FOR KNOTTED TRIVALENT GRAPHS

    https://doi.org/10.1142/S0218216512501374Cited by:4 (Source: Crossref)

    It had been known since old times (works of Murakami–Ohtsuki, Cheptea–Le and the second author) that there exists a universal finite type invariant ("an expansion") Zold for knotted trivalent graphs (KTGs), and that it can be chosen to intertwine between some of the standard operations on KTGs and their chord-diagrammatic counterparts (so that relative to those operations, it is "homomorphic"). Yet perhaps the most important operation on KTGs is the "edge unzip" operation, and while the behavior of Zold under edge unzip is well understood, it is not plainly homomorphic as some "correction factors" appear. In this paper we present two equivalent ways of modifying Zold into a new expansion Z, defined on "dotted knotted trivalent graphs" (dKTGs), which is homomorphic with respect to a large set of operations. The first is to replace "edge unzips" by "tree connected sums", and the second involves somewhat restricting the circumstances under which edge unzips are allowed. As we shall explain, the newly defined class dKTG of KTGs retains all the good qualities that KTGs have — it remains firmly connected with the Drinfel'd theory of associators and it is sufficiently rich to serve as a foundation for an "algebraic knot theory". As a further application, we present a simple proof of the good behavior of the LMO invariant under the Kirby II (band-slide) move, first proven by Le, Murakami, Murakami and Ohtsuki.

    AMSC: 57Q45, 81R50