World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CONSTRUCTING DOUBLY-POINTED HEEGAARD DIAGRAMS COMPATIBLE WITH (1,1) KNOTS

    https://doi.org/10.1142/S0218216513500715Cited by:1 (Source: Crossref)

    A (1,1) knot K in a 3-manifold M is a knot that intersects each solid torus of a genus 1 Heegaard splitting of M in a single trivial arc. Choi and Ko developed a parametrization of this family of knots by a four-tuple of integers, which they call Schubert's normal form. This paper presents an algorithm for constructing a genus 1 doubly-pointed Heegaard diagram compatible with K, given a Schubert's normal form for K. The construction, coupled with results of Ozsváth and Szabó, provides a practical way to compute knot Floer homology groups for (1,1) knots. The construction uses train tracks, and its method is inspired by the work of Goda, Matsuda, and Morifuji.

    AMSC: 57M25, 57R58