World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Khovanov homology for alternating tangles

    https://doi.org/10.1142/S0218216514500138Cited by:4 (Source: Crossref)

    We describe a "concentration on the diagonal" condition on the Khovanov complex of tangles, show that this condition is satisfied by the Khovanov complex of the single crossing tangles and , and prove that it is preserved by alternating planar algebra compositions. Hence, this condition is satisfied by the Khovanov complex of all alternating tangles. Finally, in the case of 0-tangles, meaning links, our condition is equivalent to a well-known result [E. S. Lee, The support of the Khovanov's invariants for alternating links, preprint (2002), arXiv:math.GT/0201105v1.] which states that the Khovanov homology of a non-split alternating link is supported on two diagonals. Thus our condition is a generalization of Lee's theorem to the case of tangles.

    AMSC: 57M25, 57M27