Lescop's invariant and gauge theory
Abstract
Taubes proved that the Casson invariant of an integral homology 3-sphere equals half the Euler characteristic of its instanton Floer homology. We extend this result to all closed oriented 3-manifolds with positive first Betti number by establishing a similar relationship between the Lescop invariant of the manifold and its instanton Floer homology. The proof uses surgery techniques.