Orders on magmas and computability theory
Abstract
We investigate algebraic and computability-theoretic properties of orderable magmas. A magma is an algebraic structure with a single binary operation. A right order on a magma is a linear ordering of its domain, which is right-invariant with respect to the magma operation. We use tools of computability theory to investigate Turing complexity of orders on computable orderable magmas. A magma is computable if it is finite, or if its domain can be identified with the set of natural numbers and the magma operation is computable. Interesting orderable magmas that are not even associative come from knot theory.