World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Equivalence of two definitions of set-theoretic Yang–Baxter homology and general Yang–Baxter homology

    https://doi.org/10.1142/S0218216518410134Cited by:9 (Source: Crossref)
    This article is part of the issue:

    In 2004, Carter, Elhamdadi and Saito defined a homology theory for set-theoretic Yang–Baxter operators (we will call it the “algebraic” version in this paper). In 2012, Przytycki defined another homology theory for pre-Yang–Baxter operators which has a nice graphic visualization (we will call it the “graphic” version in this paper). We show that they are equivalent. The “graphic” homology is also defined for pre-Yang–Baxter operators, and we give some examples of its one-term and two-term homologies. In the two-term case, we have found torsion in homology of Yang–Baxter operator that yields the Jones polynomial.

    AMSC: 57M25, 18G60