System Upgrade on Tue, May 28th, 2024 at 2am (EDT)
Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours. For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Ng constructed an invariant of knots in ℝ3, a combinatorial knot contact homology. Extending his study, we construct an invariant of surface-knots in ℝ4 using diagrams in ℝ3.
1. E. Artin , Zur Isotope zweidimensionalen Flächen im ℝ4, Abh. Math. Sem. Univ. Hamburg4 (1926) 174–177. Crossref, Google Scholar
2. J. S. Carter, S. Kamada and M. Saito , Surfaces in 4-Space, Encyclopedia of Mathematical Sciences: Low-Dimensional Topology, III Vol. 142 (Springer-Verlag, Berlin, 2004). Crossref, Google Scholar
3. J. S. Carter and M. Saito , Knotted Surfaces and Their Diagrams, Mathematical Surveys and Monographs, Vol. 55 (American Mathematical Society, 1998). Google Scholar
4. K. Cieliebak, T. Ekholm, J. Latschev and L. Ng , Knot contact homology, String topology, and the Cord algebra, J. École Polytech. Math.145 (2017) 661–780. Google Scholar
5. T. Ekholm, J. Etnyre, L. Ng and M. Sullivan , Knot contact homology, Geom. Topol.17 (2013) 975–1112. Crossref, Web of Science, Google Scholar
6. T. Ekholm, L. Ng and V. Shende , A complete knot invariant from contact homology, Invent. Math.211 (2018) 1149–1200. Crossref, Web of Science, Google Scholar
7. C. Gordon and T. Lidman , Knot contact homology detects cabled, composite, and torus knots, Proc. Amer. Math. Soc.145 (2017) 5405–5412. Crossref, Web of Science, Google Scholar
12. L. Ng , A topological introduction to knot contact homology, Contact and Symplectic Topology, Bolyai Society Mathematical Studies, Vol. 26 (János Bolyai Mathematical Society, Budapest, 2014), pp. 485–530. Crossref, Google Scholar
13. D. Roseman , Reidemeister-type moves for surfaces in four-dimensional space, inKnot Theory, Vol. 42 (Banach Center Publications, Polish Academy of Sciences Warsaw, 1998), pp. 347–380. Crossref, Google Scholar
14. S. Satoh and A. Shima , The 2-twist-spun trefoil has the triple point number four, Trans. Amer. Math. Soc.356 (2003) 1007–1024. Crossref, Web of Science, Google Scholar
15. T. Yashiro , A note on Roseman moves, Kobe J. Math.22 (2005) 31–38. Google Scholar