Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Periods of continued fractions and volumes of modular knots complements

    https://doi.org/10.1142/S0218216523500633Cited by:1 (Source: Crossref)

    Every oriented closed geodesic on the modular surface has a canonically associated knot in its unit tangent bundle coming from the periodic orbit of the geodesic flow. We study the volume of the associated knot complement with respect to its unique complete hyperbolic metric. We show that there exist sequences of closed geodesics for which this volume is bounded linearly in terms of the period of the geodesic’s continued fraction expansion. Consequently, we give a volume’s upper bound for some sequences of Lorenz knots complements, linearly in terms of the corresponding braid index.

    Also, for any punctured hyperbolic surface we give volume’s bounds for the canonical lift complement relative to some sequences of sets of closed geodesics in terms of the geodesics length.

    AMSC: 57M50, 57K10