World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Knotting of Equilateral Polygons in R3

    https://doi.org/10.1142/S0218216595000090Cited by:62 (Source: Crossref)

    It was proved in [4] that the knotting probability of a Gaussian random polygon goes to 1 as the length of the polygon goes to infinity. In this paper, we prove the same result for the equilateral random polygons in R3. More precisely, if EPn is an equilateral random polygon of n steps, then we have

    provided that n is large enough, where ∊ is some positive constant.