World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE SIMPLEST HYPERBOLIC KNOTS

    https://doi.org/10.1142/S0218216599000195Cited by:32 (Source: Crossref)

    While the crossing number is the standard notion of complexity for knots, the number of ideal tetrahedra required to construct the complement provides a natural alternative. We determine which hyperbolic manifolds with 6 or fewer ideal tetrahedra are knot complements, and explicitly describe the corresponding knots in the 3-sphere. Thus, these 72 knots are the simplest knots according to this notion of complexity. Many of these knots have the structure of twisted torus knots.

    The initial observation that led to the project was the abundance of knot complements with small Seifert-fibered Dehn fillings among the census manifolds. Since many of these knots have rather large crossing number they do not appear in the knot tables. Our methods, while ad hoc, yield some detailed information about the knot complements as well as the manifolds that arise from exceptional surgeries on these knots.

    The third author was partially supported by NSF Grant DMS-9626780.

    AMSC: 57M25