World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NON-COMMUTATIVE SPACE–TIME OF DOUBLY SPECIAL RELATIVITY THEORIES

    https://doi.org/10.1142/S0218271803003050Cited by:169 (Source: Crossref)

    Doubly Special Relativity (DSR) theory is a recently proposed theory with two observer-independent scales (of velocity and mass), which is to describe a kinematic structure underlining the theory of Quantum Gravity. We observe that there are infinitely many DSR constructions of the energy–momentum sector, each of whose can be promoted to the κ-Poincaré quantum (Hopf) algebra. Then we use the co-product of this algebra and the Heisenberg double construction of κ-deformed phase space in order to derive the non-commutative space–time structure and the description of the whole of DSR phase space. Next we show that contrary to the ambiguous structure of the energy momentum sector, the space–time of the DSR theory is unique and related to the theory with non-commutative space–time proposed long ago by Snyder. This theory provides non-commutative version of Minkowski space–time enjoying ordinary Lorentz symmetry. It turns out that when one builds a natural phase space on this space–time, its intrinsic length parameter ℓ becomes observer-independent.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!