GRAVITATIONAL LENSING CONSTRAINT ON THE COSMIC EQUATION OF STATE
Abstract
Recent redshift-distance measurements of Type Ia supernovae (SNe Ia) at cosmological distances suggest that two-third of the energy density of the universe is dominated by dark energy component with an effective negative pressure. This dark energy component is described by the equation of state px = wρx (w ≥ - 1). We use gravitational lensing statistics to constrain the equation of state of this dark energy. We use n(Δθ), the image separation distribution function of lensed quasars, as a tool to probe w. We find that for the observed range of Ωm ~ 0.2–0.4, w should lie between -0.8 ≤ w ≤ -0.4 in order to have five lensed quasars in a sample of 867 optical quasars. This limit is highly sensitive to lens and Schechter parameters and the evolution of galaxies.
You currently do not have access to the full text article. |
---|