PROPERTIES OF FOUR NUMERICAL SCHEMES APPLIED TO A NONLINEAR SCALAR WAVE EQUATION WITH A GR-TYPE NONLINEARITY
Abstract
We study stability, dispersion and dissipation properties of four numerical schemes (Itera-tive Crank–Nicolson, 3rd and 4th order Runge–Kutta and Courant–Fredrichs–Levy Nonlinear). By use of a Von Neumann analysis we study the schemes applied to a scalar linear wave equation as well as a scalar nonlinear wave equation with a type of nonlinearity present in GR-equations. Numerical testing is done to verify analytic results. We find that the method of lines (MOL) schemes are the most dispersive and dissipative schemes. The Courant–Fredrichs–Levy Nonlinear (CFLN) scheme is most accurate and least dispersive and dissipative, but the absence of dissipation at Nyquist frequency, if fact, puts it at a disadvantage in numerical simulation. Overall, the 4th order Runge–Kutta scheme, which has the least amount of dissipation among the MOL schemes, seems to be the most suitable compromise between the overall accuracy and damping at short wavelengths.
You currently do not have access to the full text article. |
---|