SYMMETRIES, SINGULARITIES AND THE DE-EMERGENCE OF SPACE
Abstract
Recent work has revealed intriguing connections between a Belinsky–Khalatnikov–Lifshitz-type analysis of spacelike singularities in general relativity and certain infinite-dimensional Lie algebras, particularly the "maximally extended" hyperbolic Kac–Moody algebra E10. In this essay we argue that these results may lead to an entirely new understanding of the (quantum) nature of space(–time) at the Planck scale, and hence — via an effective "de-emergence" of space near the singularity — to a novel mechanism for achieving background independence in quantum gravity.
This essay received an "honorable mention" in the 2007 Essay Competition of the Gravity Research Foundation.
You currently do not have access to the full text article. |
---|