World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STATEFINDER PARAMETERS FOR THE QUANTUM EFFECTIVE YANG–MILLS CONDENSATE DARK ENERGY MODEL

    https://doi.org/10.1142/S0218271809014765Cited by:15 (Source: Crossref)

    The quantum effective Yang–Mills condensate (YMC) dark energy model has some distinctive features so that it naturally solves the coincidence problem and, at the same time, is able to give an equation of state w crossing -1. In this work we further employ the statefinder pair (r,s), introduced by Sahni et al., to diagnose the YMC model for three cases: the noncoupling, the YMC decaying into matter only, and the YMC decaying into both matter and radiation. The trajectories (r,s) and (r,q), and the evolutions r(z) and s(z), are explicitly presented. It is found that the YMC model in all three cases has r ≃ 1 for z < 10 and s ≃ 0 for z < 5 with only small deviations, ≃ 0.02, quite close to the cosmological constant model (LCDM), but is obviously differentiated from other dark energy models, such as quiessence or kinessence.

    PACS: 98.80.-k, 98.80.Es, 95.36.+x, 04.62.+v
    You currently do not have access to the full text article.

    Recommend the journal to your library today!