A NONSINGULAR PERFECT FLUID CLASSICAL LEPTON MODEL OF ARBITRARILY SMALL RADIUS
Abstract
We exhibit a classical lepton model based on a perfect fluid that reproduces leptonic charges and masses in arbitrarily small volumes without metric singularities or pressure discontinuities. This solution is the first of this kind to our knowledge, because to date the only classical general relativistic models that have reproduced leptonic charges and masses in arbitrarily small volumes are based on imperfect (anisotopic) fluids or perfect fluids with electric field discontinuities. We use a Maxwell–Einstein exact metric for a spherically symmetric static perfect fluid in a region in which the pressure vanishes at a boundary, beyond which the metric is of the Reissner–Nordström form. This construction models lepton mass and charge in the limit as the boundary → 0.
You currently do not have access to the full text article. |
---|