World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Classical dynamics on Snyder spacetime

    https://doi.org/10.1142/S0218271815500431Cited by:15 (Source: Crossref)

    We study the classical dynamics of a particle in Snyder spacetime, adopting the formalism of constrained Hamiltonian systems introduced by Dirac. We show that the motion of a particle in a scalar potential is deformed with respect to special relativity by terms of order βE2. A remarkable result is that in the relativistic Snyder model a consistent choice of the time variable must necessarily depend on the dynamics. This is a consequence of the nontrivial mixing between position and momentum coordinates intrinsic to the Snyder model.

    PACS: 04.60.Bc
    You currently do not have access to the full text article.

    Recommend the journal to your library today!