World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The measure problem in no-collapse (many worlds) quantum mechanics

    https://doi.org/10.1142/S0218271817300087Cited by:5 (Source: Crossref)

    We explain the measure problem (cf. origin of the Born probability rule) in no-collapse quantum mechanics. Everett defined maverick branches of the state vector as those on which the usual Born probability rule fails to hold — these branches exhibit highly improbable behaviors, including possibly the breakdown of decoherence or even the absence of an emergent semi-classical reality. Derivations of the Born rule which originate in decision theory or subjective probability (i.e. the reasoning of individual observers) do not resolve this problem, because they are circular: they assume, a priori, that the observer occupies a non-maverick branch. An ab initio probability measure is sometimes assumed to explain why we do not occupy a maverick branch. This measure is constrained by, e.g. Gleason’s theorem or envariance to be the usual Hilbert measure. However, this ab initio measure ultimately governs the allocation of a self or a consciousness to a particular branch of the wave function, and hence invokes primitives which lie beyond the Everett wave function and beyond what we usually think of as physics. The significance of this leap has been largely overlooked, but requires serious scrutiny.

    PACS: 03.65.−w, 03.65.Yz
    You currently do not have access to the full text article.

    Recommend the journal to your library today!