World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Electromagnetic instability induced by neutrino interaction

    https://doi.org/10.1142/S0218271817500523Cited by:3 (Source: Crossref)

    We consider the generation and evolution of magnetic field in a primordial plasma at temperature T1T1MeV in the presence of asymmetric neutrino background, i.e. the number densities of right-handed and left-handed neutrinos are not the same. Semi-classical equations of motion of a charged fermion are derived using the effective low-energy Lagrangian. We show that the spin degree of freedom of the charged fermion couples with the neutrino background. Using this kinetic equation, we study the collective modes of the plasma. We find that there exist an unstable mode. This instability is closely related with the instability induced by chiral-anomaly in high temperature T80T80TeV plasma where right and left-handed electrons are out of equilibrium. We find that at the temperatures below the neutrino decoupling this instability can produce magnetic field in the universe. We discuss cosmological implications of the results.

    PACS: 98.80.Cq
    You currently do not have access to the full text article.

    Recommend the journal to your library today!