Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Vectorlike deformations of relativistic quantum phase-space and relativistic kinematics

    https://doi.org/10.1142/S0218271817501231Cited by:12 (Source: Crossref)

    We study a family of noncommutative spacetimes constructed by one four-vector. The large set of coordinate commutation relations described in this way includes many cases that are widely studied in the literature. The Hopf-algebra symmetries of these noncommutative spacetimes, as well as the structures of star product and twist are introduced and considered at first order in the deformation, described by four parameters. We also study the deformations to relativistic kinematics implied by this framework, and calculate the most general expression for the momentum dependence of the Lorentz transformations on momenta, which is an effect that is required by consistency. At the end of the paper we analyse the phenomenological consequences of this large family of vectorlike deformations on particles propagation in spacetime. This leads to a set of characteristic phenomenological effects.

    PACS: 02.20.Uw, 02.40.Gh, 04.60.−m, 04.60.Bc
    You currently do not have access to the full text article.

    Recommend the journal to your library today!