Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Superradiant instability of D-dimensional Reissner–Nordström-anti-de Sitter black hole mirror system

    https://doi.org/10.1142/S0218271817501413Cited by:20 (Source: Crossref)

    In this paper, a detailed analysis for superradiant stability of the system composed by a D-dimensional Reissner–Nordström-anti-de Sitter (RN-AdS) black hole and a reflecting mirror under charged scalar perturbations are presented in the linear regime. It is found that the stability of the system is heavily affected by the mirror radius as well as the mass of the scalar perturbation, AdS radius and the dimension of spacetime. In a higher dimensional spacetime, the degree of instability of the superradiant modes will be severely weakened. Nevertheless, the degree of instability can be magnified significantly by choosing a suitable value of the mirror radius. Remarkably, when the mirror radius is smaller than a threshold value the system becomes stable. We also find that massive charged scalar fields cannot trigger the instabilities in the background of D-dimensional asymptotically flat RN black hole. For a given scalar charge, a small RN-AdS black hole can be superradiantly unstable, while a large one may be always stable under charged scalar field with or without a reflecting mirror. We also show that these results can be easily expounded and understood with the help of factorized potential analysis.

    PACS: 04.70.−s, 04.50.Gh
    You currently do not have access to the full text article.

    Recommend the journal to your library today!