Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

One parameter binary black hole inverse problem using a sparse training set

    https://doi.org/10.1142/S0218271818500438Cited by:2 (Source: Crossref)

    In this paper, we use Artificial Neural Networks (ANNs) to estimate the mass ratio q in a binary black hole collision out of the gravitational wave (GW) strain. We assume the strain is a time series (TS) that contains a part of the orbital phase and the ring-down of the final black hole. We apply the method to the strain itself in the time domain and also in the frequency domain. We present the accuracy in the prediction of the ANNs trained with various values of signal-to-noise ratio (SNR). The core of our results is that the estimate of the mass ratio is obtained with a small sample of training signals and resulting in predictions with errors of the order of 1% for our best ANN configurations.

    PACS: 04.30.−w, 07.05.Mh, 05.45.Tp, 07.05.Tp
    You currently do not have access to the full text article.

    Recommend the journal to your library today!