Strong gravity signatures in the polarization of gravitational waves
Abstract
General Relativity is a hugely successful description of gravitation. However, both theory and observations suggest that General Relativity might have significant classical and quantum corrections in the Strong Gravity regime. Testing the strong field limit of gravity is one of the main objectives of the future gravitational wave detectors. One way to detect strong gravity is through the polarization of gravitational waves. For quasi-normal modes of black-holes in General Relativity, the two polarization states of gravitational waves have the same amplitude and frequency spectrum. Using the principle of energy conservation, we show that the polarizations differ for modified gravity theories. We obtain a diagnostic parameter for polarization mismatch that provides a unique way to distinguish General Relativity and modified gravity theories in gravitational wave detectors.
This essay received an Honorable Mention in the 2019 Essay Competition of the Gravity Research Foundation.
You currently do not have access to the full text article. |
---|