Properties of a recent quantum extension of the Kruskal geometry
Abstract
Recently, it was shown that, in an effective description motivated by loop quantum gravity, singularities of the Kruskal spacetime are naturally resolved [A. Ashtekar, J. Olmedo and P. Singh, Phys. Rev. Lett.121 (2018) 241301; A. Ashtekar, J. Olmedo and P. Singh, Phys. Rev. D98 (2018) 126003]. In this paper, we explore a few properties of this quantum corrected effective metric. In particular, we (i) calculate the Hawking temperature associated with the horizon of the effective geometry and show that the quantum correction to the temperature is completely negligible for macroscopic black holes, just as one would hope; (ii) discuss the subtleties associated with the asymptotic properties of the spacetime metric, and show that the metric is asymptotically flat in a precise sense; (iii) analyze the asymptotic fall-off of curvature; and, (iv) show that the ADM energy is well defined (and agrees with that determined by the horizon area), even though the curvature falls off less rapidly than in the standard asymptotically flat context.
You currently do not have access to the full text article. |
---|