World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MINISUPERSPACES: OBSERVABLES AND QUANTIZATION

    https://doi.org/10.1142/S0218271893000039Cited by:55 (Source: Crossref)

    A canonical transformation is performed on the phase space of a number of homogeneous cosmologies to simplify the form of the scalar (or Hamiltonian) constraint. Using the new canonical coordinates, it is then easy to obtain explicit expressions of Dirac observables, i.e. phase-space functions which commute weakly with the constraint. This, in turn, enables us to carry out a general quantization program to completion. We are also able to address the issue of time through “deparametrization” and discuss physical questions such as the fate of initial singularities in the quantum theory. We find that they persist in the quantum theory in spite of the fact that the evolution is implemented by a one-parameter family of unitary transformations. Finally, certain of these models admit conditional symmetries which are explicit already prior to the canonical transformation. These can be used to pass to the quantum theory following an independent avenue. The two quantum theories — based, respectively, on Dirac observables in the new canonical variables and conditional symmetries in the original ADM variables — are compared and shown to be equivalent.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!