World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STRONGLY ENHANCED LOW ENERGY α-PARTICLE DECAY IN HEAVY ACTINIDE NUCLEI AND LONG-LIVED SUPERDEFORMED AND HYPERDEFORMED ISOMERIC STATES

    https://doi.org/10.1142/S0218301301000472Cited by:13 (Source: Crossref)

    Unidentified low energy and very enhanced α-particle groups have been observed in various actinide fractions produced via secondary reactions in a CERN W target which had been irradiated with 24-GeV protons. In particular, 5.14, 5.27 and 5.53 MeV α-particle groups with corresponding half-lives of 3.8±1.0 y, 625±84 d and 26±7d, have been seen in Bk, Es and Lr-No sources, respectively. The measured energies are a few MeV lower than the known ground state to ground state α-decays in the corresponding neutron-deficient actinide nuclei. The half-lives are 104 to 107 shorter than expected from energy versus lifetime relationship for such low-energy α-particles in this region of nuclei. The deduced evaporation residue cross sections are in the mb region, about 104 times higher than expected. Not only is it impossible to identify these α-decays with any known activity in the whole nuclear chart, but they also could not be due to hypothetically unknown isomeric states in various conceivable neutron deficient nuclei, nor due to unknown isomeric states in the rare-earth region. Based on the fact that in other experiments we have found isomeric states in the second and third minima of the potential for other heavy ion reaction products, one can now understand in a quantitative way, both the unusual low energies, the unusual enhanced lifetimes and the unusual large production cross sections, in terms of production of similar isomeric states in appropriate actinide isotopes. Some consequences regarding the production of the long-lived superheavy elements are also discussed.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!