World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE ANALYSIS OF THE EIGENVALUES OF THE DIRAC EQUATION WITH A 1/r POTENTIAL IN D DIMENSIONS

    https://doi.org/10.1142/S0218301304002582Cited by:18 (Source: Crossref)

    The Dirac equation is investigated in D+1 dimensional space-time. The radial equations of this quantum system are obtained and solved exactly by the confluent hypergeometric equation approach. The energy levels E(n,l,D) are analytically presented. For the continuous dimension D as proposed by Nieto, the dependences of the energy difference ΔE(n,l,D) for D and D-1 on the dimension D are demonstrated as three different kinds of change rules. The dependences of the energy E(n,l,D) on the dimension D are also discussed. It is found that the energies E(n,l,D) (l≠0) are almost independent of the quantum number l for a large D, while E(n,0,D) first decreases and then increases with the increasing dimension D. The dependences of the energies E(n,l,ξ) on the potential strength ξ are also studied for the given dimension D=3. We find that the energies E(n,l,ξ) decrease with ξ≤l+1.

    PACS: 03.65.Pm, 03.65.Ge
    You currently do not have access to the full text article.

    Recommend the journal to your library today!