Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Studying the Finiteness of a Tracking Technique with Random Distances and Velocities that Reduces the Collision Time Between a Brownian Particle and a Nanosensor in the Fluid

    The tracking technique that is examined in this study considers the nanosensor’s velocity and distance as independent random variables with known probability density functions (PDFs). The nanosensor moves continuously in both directions from the starting point of the real line (the line’s origin). It oscillates while traveling through the origin (both left and right). We provide an analytical expression for the density of this distance using the Fourier-Laplace representation and a sequence of random points. We can take the tracking distance into account as a function of a discounted effort-reward parameter in order to account for this uncertainty. We provide an analytical demonstration of the effects this parameter has on reducing the expected value of the first collision time between a nanosensor and the particle and confirming the existence of this technique.

  • articleNo Access

    A New ANFIS-Based Hybrid Method in the Design and Fabrication of a High-Performance Novel Microstrip Diplexer for Wireless Applications

    In this work, we have used a novel adaptive neuro-fuzzy inference system (ANFIS) method to design and fabricate a high-performance microstrip diplexer. For developing the proposed ANFIS model, the hybrid learning method consisting of least square estimation and back-propagation (BP) techniques is utilized. To achieve a compact diplexer, a designing process written in MATLAB 7.4 software is introduced based on the proposed ANFIS model. The basic microstrip resonator used in this study is mathematically analyzed. The designed microstrip diplexer operates at 2.2GHz and 5.1GHz for wideband wireless applications. Compared to the previous works, it has the minimum insertion losses and the smallest area of 0.007 λg2 (72.2mm2). It has flat channels with very low group delays (GDs) and wide fractional bandwidths (FBWs). The GDs at its lower and upper channels are only 0.48ns and 0.76ns, respectively. Another advantage of this work is its suppressed harmonics up to 12.9GHz (5th harmonic). To design the proposed diplexer, an LC model of the presented resonator is introduced and analyzed. To verify the simulation results and the presented ANFIS method, we fabricated and measured the proposed diplexer. The results show that both simulations and measurements data are in good agreement, which give reliability to the proposed ANFIS method.

  • articleNo Access

    ANALYSIS OF SURFACE ROUGHNESS AT OVERLAPPING LASER SHOCK PEENING

    The overlapping effects on surface roughness are studied when samples are treated by laser shock peening (LSP). Surface roughness of overlapped circular laser spot is calculated by ISO 25178 height parameters. The usually used overlapping styles namely isosceles-right-triangle-style (AAP) and equilateral-triangle-style (AAA) are carefully investigated when the overlapping degree in x-axis (ηx) is below 50%. Surface roughness of isosceles-right-triangle-style attains its minimum value at ηx of 29.3%, and attains its maximum value at ηx of 43.6%. Surface roughness of equilateral-triangle-style attains its minimum value at ηx of 42.3%, and attains its maximum value at ηx of 32%. Experimental results are well consistent with theoretical analysis.