World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ENTROPY CREATION IN RELATIVISTIC HEAVY ION COLLISIONS

    https://doi.org/10.1142/S0218301311020459Cited by:42 (Source: Crossref)

    We review current ideas on entropy production during the different stages of a relativistic nuclear collision. This includes recent results on decoherence entropy and the entropy produced during the hydrodynamic phase by viscous effects. We start by a discussion of decoherence caused by gluon bremsstrahlung in the very first interactions of gluons from the colliding nuclei. We then present a general framework, based on the Husimi distribution function, for the calculation of entropy growth in quantum field theories, which is applicable to the early ("glasma") phase of the collision during which most of the entropy is generated. The entropy calculated from the Husimi distribution exhibits linear growth when the quantum field contains unstable modes and the growth rate is asymptotically equal to the Kolmogorov–Sinaï entropy. We outline how the approach can be used to investigate the problem of entropy production in a relativistic heavy ion reaction from first principles. We show that the same result can be obtained in the framework of a completely different approach called eigenstate thermalization hypothesis. Finally we discuss some recent results on entropy production in the strong coupling limit, as obtained from AdS/CFT duality.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!