VECTOR-LIKE CONTRIBUTIONS FROM OPTIMIZED PERTURBATION IN THE ABELIAN NAMBU–JONA-LASINIO MODEL FOR COLD AND DENSE QUARK MATTER
Abstract
Two-loop corrections for the standard Abelian Nambu–Jona-Lasinio model are obtained with the optimized perturbation theory (OPT) method. These contributions improve the usual mean-field and Hartree–Fock results by generating a 1/Nc suppressed term, which only contributes at finite chemical potential. We take the zero temperature limit observing that, within the OPT, chiral symmetry is restored at a higher chemical potential μ, while the resulting equation of state is stiffer than the one obtained when mean-field is applied to the standard version of the model. In order to understand the physical nature of these finite Nc contributions, we perform a numerical analysis to show that the OPT quantum corrections mimic effective repulsive vector–vector interaction contributions. We also derive a simple analytical approximation for the mass gap, accurate at the percent level, matching the mean-field approximation extended by an extra vector channel to OPT. For μ ≳ μc the effective vector coupling matching OPT is numerically close (for the Abelian model) to the Fierz-induced Hartree–Fock value G/(2Nc), where G is the scalar coupling, and then increases with μ in a well-determined manner.
You currently do not have access to the full text article. |
---|