World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE ORIGIN OF MASS IN THE STANDARD MODEL

    https://doi.org/10.1142/S021830131350002XCited by:0 (Source: Crossref)

    A model is proposed in which the presently existing elementary particles are the result of an evolution proceeding from the simplest possible particle state to successively more complex states via a series of symmetry-breaking transitions. The properties of two fossil particles — the tauon and muon — together with the observed photon–baryon number ratio provide information that makes it possible to track the early development of particles. A computer simulation of the evolution reveals details about the purpose and history of all presently known elementary particles. In particular, it is concluded that the heavy Higgs particle that generates the bulk of the mass of the Z and W bosons also comes in a light version, which generates small mass contributions to the charged leptons. The predicted mass of this "flyweight" Higgs boson is 0.505 MeV/c2, 106.086 eV/c2 or 12.0007 μeV/c2 (corresponding to a photon of frequency 2.9018 GHz) depending on whether it is associated with the tauon, muon or electron. Support for the conclusion comes from the Brookhaven muon g-2 experiment, which indicates the existence of a Higgs particle lighter than the muon.

    PACS: 12.10.-g, 98.80.Bp
    You currently do not have access to the full text article.

    Recommend the journal to your library today!