World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Study of the neutron and proton capture reactions 10,11B(n, γ), 11B(p, γ), 14C(p, γ), and 15N(p, γ) at thermal and astrophysical energies

    https://doi.org/10.1142/S0218301314300124Cited by:16 (Source: Crossref)

    We have studied the neutron-capture reactions 10,11B(n, γ) and the role of the 11B(n, γ) reaction in seeding r-process nucleosynthesis. The possibility of the description of the available experimental data for cross-sections of the neutron capture reaction on 10B at thermal and astrophysical energies, taking into account the resonance at 475 keV, was considered within the framework of the modified potential cluster model (MPCM) with forbidden states (FS) and accounting for the resonance behavior of the scattering phase shifts. In the framework of the same model, the possibility of describing the available experimental data for the total cross-sections of the neutron radiative capture on 11B at thermal and astrophysical energies were considered with taking into account the 21 and 430 keV resonances. Description of the available experimental data on the total cross-sections and astrophysical S-factor of the radiative proton capture on 11B to the GS of 12C was treated at astrophysical energies. The possibility of description of the experimental data for the astrophysical S-factor of the radiative proton capture on 14C to the GS of 15N at astrophysical energies, and the radiative proton capture on 15N at the energies from 50 to 1500 keV was considered in the framework of the MPCM with the classification of the orbital states according to Young tableaux. It was shown that, on the basis of the M1 and the E1 transitions from different states of the p15N scattering to the GS of 16O in the p15N channel, it is quite succeed to explain general behavior of the S-factor in the considered energy range in the presence of two resonances.

    PACS: 21.60.Gx, 25.20.Lj, 25.40.Lw, 26.20.Np, 26.35.+c, 26.50.+x, 26.90.+n, 98.80.Ft
    You currently do not have access to the full text article.

    Recommend the journal to your library today!