World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Simultaneous muon and reference hadron measurements in the compressed baryonic matter experiment at FAIR

    https://doi.org/10.1142/S0218301320300039Cited by:0 (Source: Crossref)

    The mission of the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt is to explore the QCD phase diagram at high net baryon densities likely to exist in the core of neutron stars. The CBM detector system is designed to perform multi-differential measurements of hadrons and leptons in central gold-gold collisions at beam energies between 2 and 11 A GeV with unprecedented precision and statistics. In order to reduce the systematic errors of the lepton measurements, which generally suffer from a large combinatorial background, both electrons and muons will be measured with the same acceptance. Up to now, no di-muon measurements have been performed in heavy-ion collisions at beam energies below 158 A GeV. The main device for electron identification, a Ring Imaging Cherenkov (RICH) detector, can be replaced by a setup comprising hadron absorbers and tracking detectors for muon measurements. In order to obtain a complete picture of the reaction, it is important to measure simultaneously leptons and hadrons. This requirement is fulfilled for the RICH, which has a low material budget, and only little affects the trajectories of hadrons on their way to the Time-of-Flight (TOF) detector. In contrast, the simultaneous measurement of muons and hadrons within the same experimental acceptance poses a substantial challenge. This article reviews the simulated performance of the CBM experiment for muon identification, together with the possibility of simultaneous hadron measurements.

    PACS: 29.40.Gx, 29.90.+r, 24.85.+p
    You currently do not have access to the full text article.

    Recommend the journal to your library today!