World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Flow and vorticity with varying chemical potential in relativistic heavy ion collisions

    https://doi.org/10.1142/S0218301320500019Cited by:3 (Source: Crossref)

    We study the vorticity patterns in relativistic heavy ion collisions with respect to the collision energy. The collision energy is related to the chemical potential used in the thermal — statistical models that assume approximate chemical equilibrium after the relativistic collision. We use the multiphase transport model (AMPT) to study the vorticity in the initial parton phase as well as the final hadronic phase of the relativistic heavy ion collision. We find that as the chemical potential increases, the vortices are larger in size. Using different definitions of vorticity, we find that vorticity plays a greater role at lower collision energies than at higher collision energies. We also look at other effects of the flow patterns related to the shear viscosity at different collision energies. We find that the shear viscosity obtained is almost a constant with a small decrease at higher collision energies. We also look at the elliptic flow as it is related to viscous effects in the final stages after the collision. Our results indicate that the viscosity plays a greater role at higher chemical potential and lower collision energies.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!