Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Analysis of positive pions obtained in d+C collisions at 4.2AGeV/c

    https://doi.org/10.1142/S021830132050041XCited by:1 (Source: Crossref)

    Temperature is an important and commonly used parameter among others to study properties of matter created during high energy collisions of nuclei. Experimental data from JINR and UrQMD (version 3.3p2) model simulations have been used to estimate temperature and other properties of positive pions in collisions of deuteron with carbon nuclei at incident momentum of 4.2GeV/c in this paper. Transverse mass and transverse momentum spectra have been used to get inverse slope parameter/temperature of said particles, with the help of some fitting equations. These equations are referred as Hagedorn Thermodynamic and Boltzmann Distribution functions. Such functions or equations are used to describe particles spectra. Temperature of positive pions has been found to be equal to 104±2 and 112±2MeV in experimental and model, respectively, using Hagedorn function. Results from both experimental and model calculations have also been compared with each other and thus most reliable fitting function has been suggested. It is found that Hagedorn Thermodynamic function is the most reliable function to get pions’ temperature in said collision system at given momentum. Similarly, results obtained in this paper have been compared with results from other experiments in the world and worthy conclusions have been reached and reported.

    PACS: 14.20.Gk, 25.10.+s, 25.45.−z
    You currently do not have access to the full text article.

    Recommend the journal to your library today!