World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STOCHASTICS OF ORDER n IN BIOLOGICAL SYSTEMS: APPLICATIONS TO POPULATION DYNAMICS, THERMODYNAMICS, NONEQUILIBRIUM PHASE AND COMPLEXITY

    https://doi.org/10.1142/S021833900300083XCited by:9 (Source: Crossref)

    In the present paper, a modeling in the complex space is combined with complex-valued fractional Brownian motion to get some new results in biological systems. The rational of this approach is as follows. Biological dynamics which evolve continuously in time but are not time differentiable, necessarily exhibit random properties. These random features appear also as a result of the randomness of the proper time of biological systems. Usually, this is taken into account by using white noises that is to say fractals of order two. Fractals of order n larger than two are more suitable for increments with large amplitudes, and they may be introduced by using either real-valued fractal noises with long range memory or Brownian motions with independent increments, which are necessarily complex-valued. In the later case, we are then led to describe biological systems in the complex plane. After some background on the complex-valued fractional Brownian motion, we shall deal successively with population growth, information thermodynamics of order n, nonequilibrium phase transition via fractal noises and complexity of Markovian processes via the concept of informational divergence.

    Invited Paper