World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

VALIDATION OF THE IN VITRO INCUBATION OF EXTENSOR DIGITORUM LONGUS MUSCLE FROM MICE WITH A MATHEMATICAL MODEL

    https://doi.org/10.1142/S0218339010003494Cited by:0 (Source: Crossref)

    In vitro incubation of tissues; in particular, skeletal muscles from rodents, is a widely-used experimental method in diabetes research. This experimental method has previously been validated, both experimentally and theoretically. However, much of the method's experimental data remains unclear, including the high-rate of lactate production and the lack of an observable increase in glycogen content, within a given time. The predominant hypothesis explaining the high-rate of lactate production is that this phenomenon is dependent on a mechanism in glycolysis that works as a safety valve, producing lactate when glucose uptake is super-physiological. Another hypothesis is that existing anoxia forces more ATP to be produced from glycolysis, leading to an increased lactate concentration. The lack of an observable increase in glycogen content is assumed to be dependent on limitations in sensitivity of the measuring method used. We derived a mathematical model to investigate which of these hypotheses is most likely to be correct. Using our model, data analysis indicates that the in vitro incubated muscle specimens, most likely are sensing the presence of existing anoxia, rather than an overflow in glycolysis. The anoxic milieu causes the high lactate production. The model also predicts an increased glycogenolysis. After mathematical analyses, an estimation of the glycogen concentration could be made with a reduced model. In conclusion, central anoxia is likely to cause spatial differences in glycogen concentrations throughout the entire muscle. Thus, data regarding total glycogen levels in the incubated muscle do not accurately represent the entire organ. The presented model allows for an estimation of total glycogen, despite spatial differences present in the muscle specimen.