World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MATHEMATICAL MODELING OF BACTERIAL RESISTANCE TO ANTIBIOTICS BY MUTATIONS AND PLASMIDS

    https://doi.org/10.1142/S0218339016500078Cited by:15 (Source: Crossref)

    Diversity of drugs against bacterial infections, and development of resistance to such drugs are increasing. We formulate and analyze a deterministic model for the population dynamics of sensitive and resistant bacteria to multiple bactericidal and bacteriostatic antibiotics, assuming that drug resistance is acquired through mutations and plasmid transmission. Model equilibria are determined from qualitative analysis, and numerical simulations are used to assess temporal dynamics of sensitive and drug-resistant bacteria. The model presents three possibilities: elimination of bacteria, persistence of only resistant bacteria, or coexistence of sensitive and resistant bacteria. Evolution to one of these scenarios depends on thresholds numbers involving sensitive and resistant bacteria.