World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Cell Cycle and Genome EvolutionNo Access

MODELING THE CELL DIVISION CYCLE: A QUALITATIVE APPROACH

    https://doi.org/10.1142/S021833909500006XCited by:0 (Source: Crossref)

    The underlying biochemical mechanisms that drive the cell division cycle involve the interactions and feedback controls between the cytoplasmic proteins cdc2 and cyclin, and the activities of the cdc2-cyclin complex MPF. Alternation between interphase and mitosis is associated with oscillatory MPF and cyclin levels. This paper describes an ordinary differential equations (ODE) model and a functional differential equations (FDE) model of the cell cycle based on experimental work with the newly fertilized frog egg. One major difference of these models from previous ones is the use of nonspecific reaction terms in describing the interactions between cdc2, cyclin and MPF. This qualitative approach makes possible the evaluation of the roles of the various reactions and feedback mechanisms in the control of the cell cycle.