World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STRESSES AND STRAINS IN THE LEFT VENTRICULAR WALL APPROXIMATED AS A THICK CONICAL SHELL USING LARGE DEFORMATION THEORY

    https://doi.org/10.1142/S0218339096000247Cited by:8 (Source: Crossref)

    In this paper, stress and strain equations are developed for the left ventricle mainly to find the influence of the ventricle’s shape on wall stresses. Here, the ventricle is assumed to be a thick-walled truncated conical shell and large elastic deformation theory is applied. Our model is compared to corresponding results approximating the left ventricle as a spherical shell. Clinically relevant parameters such as the myocardial stiffness constant, the stretch ratios and the stresses and strains have been computed using available canine data. The conical model leads to more realistic results than the spherical model and enables one to evaluate stresses and strains from base to apex instead of only at the equatorial region as in a cylindrical model.