THE MULTIFRACTAL SCALING OF CLOUD RADIANCES FROM 1M TO 1KM
Abstract
The cloud radiances and atmospheric dynamics are strongly nonlinearly coupled, the observed scaling of the former from 1 km to planetary scales is prima facae evidence for scale invariant dynamics. In contrast, the scaling properties of radiances at scales <1 km have not been well studied (contradictory claims have been made) and if a characteristic vertical cloud thickness existed, it could break the scaling of the horizontal radiances. In order to settle this issue, we use ground-based photography to study the cloud radiance field through the range scales where breaks in scaling have been reported (30 m to 500 m). Over the entire range 1 m to 1 km the two-dimensional (2D) energy spectrum (E(k)) of 38 clouds was found to accurately follow the scaling form E(k)≈ k-β where k is a wave number and β is the spectral exponent. This indirectly shows that there is no characteristic vertical cloud thickness, and that "radiative smoothing" of cloud structures occurs at all scales. We also quantitatively characterize the type of (multifractal) scaling showing that the main difference between transmitted and reflected radiance fields is the (scale-by-scale) non-conservation parameter H. These findings lend support to the unified scaling model of the atmosphere which postulates a single anisotropic scaling regime from planetary down to dissipation scales.
This paper was presented at the 4th Nonlinear Variability in Geophysics and Astrophysics Conference in Roscoff, France, 12–17 July 1998.