World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE AUTOMATIC SELECTION OF THE ONSET OF SCALING

    https://doi.org/10.1142/S0218348X03002099Cited by:28 (Source: Crossref)

    A method is developed for the automatic detection of the onset of scaling for long-range dependent (LRD) time series and other asymptotically scale-invariant processes. Based on wavelet techniques, it provides the lower cutoff scale for the regression that yields the scaling exponent. The method detects the onset of scaling through the dramatic improvement of a goodness-of-fit statistic taken as a function of this lower cutoff scale. It relies on qualitative features of the goodness-of-fit statistic and on features of the wavelet analysis. The method is easy to implement, appropriate for large data sets and highly robust. It is tested against 34 time series models and found to perform very well. Examples involving telecommunications data are presented.