IMPACT OF FRACTAL DIMENSION IN THE DESIGN OF MULTI-RESONANT FRACTAL ANTENNAS
Abstract
During the last few decades, fractal geometries have found numerous applications in several fields of science and engineering such as geology, atmospheric sciences, forest sciences, physiology and electromagnetics. Although the very fractal nature of these geometries have been the impetus for their application in many of these areas, a direct quantifiable link between a fractal property such as dimension and antenna characteristics has been elusive thus far. In this paper, the variations in the input characteristics of multi-resonant antennas based on generalizations of Koch curves and fractal trees are examined by numerical simulations. Schemes for such generalizations of these geometries to vary their fractal dimensions are presented. These variations are found to have a direct influence on the primary resonant frequency, the input resistance at this resonance, and ratios resonant frequencies of these antennas. It is expected that these findings would further enhance the popularity of the study of fractals.