World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

IMPACT OF FRACTAL DIMENSION IN THE DESIGN OF MULTI-RESONANT FRACTAL ANTENNAS

    https://doi.org/10.1142/S0218348X04002288Cited by:12 (Source: Crossref)

    During the last few decades, fractal geometries have found numerous applications in several fields of science and engineering such as geology, atmospheric sciences, forest sciences, physiology and electromagnetics. Although the very fractal nature of these geometries have been the impetus for their application in many of these areas, a direct quantifiable link between a fractal property such as dimension and antenna characteristics has been elusive thus far. In this paper, the variations in the input characteristics of multi-resonant antennas based on generalizations of Koch curves and fractal trees are examined by numerical simulations. Schemes for such generalizations of these geometries to vary their fractal dimensions are presented. These variations are found to have a direct influence on the primary resonant frequency, the input resistance at this resonance, and ratios resonant frequencies of these antennas. It is expected that these findings would further enhance the popularity of the study of fractals.