World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SCALING PROPERTIES OF THE SPREAD HARMONIC MEASURES

    https://doi.org/10.1142/S0218348X06003209Cited by:22 (Source: Crossref)

    A family of the spread harmonic measures is naturally generated by partially reflected Brownian motion. Their relation to the mixed boundary value problem makes them important to characterize the transfer capacity of irregular interfaces in Laplacian transport processes. This family presents a continuous transition between the harmonic measure (Dirichlet condition) and the Hausdorff measure (Neumann condition). It is found that the scaling properties of the spread harmonic measures on prefractal boundaries are characterized by a set of multifractal exponent functions depending on the only scaling parameter. A conjectural extension of the spread harmonic measures to fractal boundaries is proposed. The developed concepts are applied to give a new explanation of the anomalous constant phase angle frequency behavior in electrochemistry.