World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

APPLYING BUCKET RANDOM PERMUTATIONS TO STATIONARY SEQUENCES WITH LONG-RANGE DEPENDENCE

    https://doi.org/10.1142/S0218348X07003526Cited by:2 (Source: Crossref)

    Bucket random permutations (shuffling) are used to modify the dependence structure of a time series, and this may destroy long-range dependence, when it is present. Three types of bucket permutations are considered here: external, internal and two-level permutations. It is commonly believed that (1) an external random permutation destroys the long-range dependence and keeps the short-range dependence, (2) an internal permutation destroys the short-range dependence and keeps the long-range dependence, and (3) a two-level permutation distorts the medium-range dependence while keeping both the long-range and short-range dependence. This paper provides a theoretical basis for investigating these claims. It extends the study started in Ref. 1 and analyze the effects that these random permutations have on a long-range dependent finite variance stationary sequence both in the time domain and in the frequency domain.