World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FRACTALS WITH HYPERBOLIC SCATORS IN 1 + 2 DIMENSIONS

    https://doi.org/10.1142/S0218348X15500048Cited by:0 (Source: Crossref)

    A nondistributive scator algebra in 1 + 2 dimensions is used to map the quadratic iteration. The hyperbolic numbers square bound set reveals a rich structure when taken into the three-dimensional (3D) hyperbolic scator space. Self-similar small copies of the larger set are obtained along the real axis. These self-similar sets are located at the same positions and have equivalent relative sizes as the small M-set copies found between the Myrberg-Feigenbaum (MF) point and -2 in the complex Mandelbrot set. Furthermore, these small copies are self similar 3D copies of the larger 3D bound set. The real roots of the respective polynomials exhibit basins of attraction in a 3D space. Slices of the 3D confined scator set, labeled (s;x,y), are shown at different planes to give an approximate idea of the 3D objects highly complicated boundary.