Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FRACTAL APPROXIMATION OF JACKSON TYPE FOR PERIODIC PHENOMENA

    https://doi.org/10.1142/S0218348X18500792Cited by:6 (Source: Crossref)

    The reconstruction of an unknown function providing a set of Lagrange data can be approached by means of fractal interpolation. The power of that methodology allows us to generalize any other interpolant, both smooth and nonsmooth, but the important fact is that this technique provides one of the few methods of nondifferentiable interpolation. In this way, it constitutes a functional model for chaotic processes. This paper studies a generalization of an approximation formula proposed by Dunham Jackson, where a wider range of values of an exponent of the basic trigonometric functions is considered. The trigonometric polynomials are then transformed in close fractal functions that, in general, are not smooth. For suitable election of this parameter, one obtains better conditions of convergence than in the classical case: the hypothesis of continuity alone is enough to ensure the convergence when the sampling frequency is increased. Finally, bounds of discrete fractal Jackson operators and their classical counterparts are proposed.